About
Our scientific group leads in quantum computing, focusing on developing advanced quantum algorithms and simulation techniques to solve complex computational challenges. We specialize in both algorithms for digital and continuous-variable quantum computers, as well as hybrid digital-analog devices for solving partial differential equations (PDEs), leveraging its ability to handle infinite-dimensional quantum information for more efficient solutions than classical methods.

Additionally, we explore enhancing machine learning algorithms through the unique properties of quantum mechanics, aiming to improve data processing and analytical capabilities.

We are committed to advancing quantum computing applications, continually seeking to demonstrate the real-world potential of these technologies. Our goal is to develop scalable quantum solutions and drive transformative advances across various domains.
Papers
  • Shi, Jin, Liu Nana, and Yu Yue. "Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation." arXiv preprint arXiv:2407.15895 (2024).
  • Jin, Shi, and Nana Liu. "Analog quantum simulation of parabolic partial differential equations using Jaynes-Cummings-like models." arXiv preprint arXiv:2407.01913 (2024).
  • Guseynov, N., Huang, X., & Liu, N. (2024). Explicit gate construction of block-encoding for Hamiltonians needed for simulating partial differential equations. arXiv preprint arXiv:2405.12855.
  • Liu, Nana, et al. "Quantum algorithms for matrix geometric means." arXiv preprint arXiv:2405.00673 (2024).
  • Jin, Shi, Nana Liu, and Yue Yu. "Quantum simulation of the Fokker-Planck equation via Schrodingerization." arXiv preprint arXiv:2404.13585 (2024).
  • Lv O., Zhou B., Yang L. F. Modeling Bellman-error with logistic distribution with applications in reinforcement learning //Neural Networks. – 2024. – Т. 177. – С. 106387.
  • Lv, Outongyi, et al. "A unified view on neural message passing with opinion dynamics for social networks." arXiv preprint arXiv:2310.01272 (2023).
  • Cheng, Hao-Chung, et al. "Sample complexity of quantum hypothesis testing." arXiv preprint arXiv:2403.17868 (2024).
  • Guseynov, N. M., et al. "Depth analysis of variational quantum algorithms for the heat equation." Physical Review A 107.5 (2023): 052422.
  • Jin S., Liu N., Ma C. Schrodingerisation based computationally stable algorithms for ill-posed problems in partial differential equations //arXiv preprint arXiv:2403.19123. – 2024.
  • Yuan, Yewei, et al. "An improved QFT-based quantum comparator and extended modular arithmetic using one ancilla qubit." New Journal of Physics 25.10 (2023): 103011.
  • Hu, Junpeng, et al. "Quantum Circuits for partial differential equations via Schrodingerisation." arXiv preprint arXiv:2403.10032 (2024).
  • Jin, Shi, Nana Liu, and Chuwen Ma. "On Schrodingerization based quantum algorithms for linear dynamical systems with inhomogeneous terms." arXiv preprint arXiv:2402.14696 (2024).
  • Jin, Shi, and Nana Liu. "Analog quantum simulation of partial differential equations." Quantum Science and Technology (2023).
Вернуться назад
Contact us:
Professor Nana Liu
nana.liu@quantumlah.org

Outongyi Lv
harry_lv@sjtu.edu.cn

Xiajie Huang
xj.huang@sjtu.edu.cn

Yewei Yuan
yuanyw@sjtu.edu.cn

Nikita Guseynov
guseynov.nm@gmail.com

Zihao Tang
momo_0@sjtu.edu.cn


SJTU,
China
Made on
Tilda